Redesigning the Hardware for the Virtual TV Streaming Server

This article discusses a hardware design change to the Virtual TV Streaming Server discussed in Creating a Virtual TV Streaming Server.

If you are not familiar with the previous setup. The design revolved around an array of TV tuners connected to a 7-port USB 3.0 hub. In turn, this connected to a USB 3.0 controller which was passed through Discrete Device Assignment (DDA) through to a Windows 10 Virtual Machine. This run DVBLogic TV Mosaic, the IP TV streaming software.

 

Virtual TV Streaming Server Meltdown

The solution has run extremely well. There have been no crashes from TV Mosaic, the VM or the Hypervisor. Until last week.

The system missed last Saturdays recording schedules and on Sunday afternoon, wouldn’t initiate playback. On inspection of the VM, one of the Tuners was showing as “unknown” on the TV Mosaic console. The others were all fine. Once this phantom tuner was removed from the console, everything started working again.

Initially thinking that it was related to a coincidental BIOS update on the server, it turned out that the tuner was simply dead. I RMA’d it with DVBLogic – who didn’t challenge my diagnostic or offer any resistance – but I did have to ship it Internationally at my own expense.

A week later, I came to use the system again and, once more, it was dead. A trip to the attic later and the was dead. A multimeter confirmed that the power supply had died, and I begun an RMA process with StarTech this morning.

 

Analysis

If the power supply on the StarTech was defective, it could potentially have caused the fault with the TV Butler tuner. Although this is speculative and unprovable. My main suspicion is that the problems were caused by heat. The attic roof space is uninsulated, and the UK is in the summer period. With temperature in the attic space certainly to have ranged into the 40c’s.

Unlike with the physical TV server that this setup replaced – which had fans. This setup doesn’t. PCIe TV Tuners are intrinsically designed to withstand higher thermal variances than USB ones. The StarTech and TV Butler products are quite simply basic consumer devices. It is possible that this factor led to both of their demises.

There was a power outage mid-week last week, and the StarTech itself was not sitting on the server UPS – but it was on a surge protector. It is my belief that this did not contribute to the issue.

 

Hardware Redesign

The brief for the redesign is simple

  1. Remove essential electrical components from the attic
  2. Minimise space use
  3. Minimise electrical consumption (as everything will now be powered through the UPS)
  4. Do not clutter up the backplane of the server with dongles

 

Power

To accommodate #1, #2 and #3 the USB Hub is going to be eliminated from the design. The TV Tuners will now connect directly to the DDA USB controller. In order to do this, the dual port controller will need to be replaced.

After deliberating on whether to get an externally powered or bus powered 4-port controller, I chose a , bus powered card. A risk, given my previous experience here. The DG-PCIE-04B reviewed better than a similarly priced externally powered one. The decider was that it uses a NEC chipset and not a RealTek/SiS (i.e. cheap) chip. Finally, the fact that each of the ports had its own voltage management and fuse circuit is a valuable quality safeguard.

 

Patch Panel TV

To satisfy design brief #4, the USB TV Tuners will need to be mounted away from the server. To achieve this, I am going to mount the Tuners in the patch panel.

Using a set of keystone jacks. A USB lead will run between the USB controller and the Patch panel; simply mounting to the TV Tuners held in the patch panel.
TNP USB 3.0 Keystone Jack Image

The patch panel happens to be near the ceiling, directly above the TV aerial distributor for the house. Using 4m coaxial cable, the aerial feed can route through the existing ceiling cable run and clip neatly into the TV Tuners.

The Amazon order consisted of

  • 1x
  • 1x Pack of 5
  • 4x Rankie USB 3.0 Type A Male to Male Data Cable, 3m (Server – Patch Panel)
  • 3x Ex-Pro White Coax F Plug Type – to – Male M Coax plug Connection Cable Lead – 4m (Aerial distributor – TV Tuners)

 

Installation

The installation was extremely simple.

  1. Replace the existing 2 port USB controller with the 4 port one
  2. Clip the USB 3.0 keystones into the patch panel
  3. Run cables between the USB controller and the front profile (base) of the USB keystones
  4. Passing the USB controller through to Hyper-V
    1. Shutdown the Virtual Streaming TV Server VM
    2. Get the Device Instance Path from the Details tab > Device instance path section in Device Manager e.g.
      PCI\VEN_1912&DEV_0014&SUBSYS_00000000&REV_03\4&1B96500D&0&0010
    3. Use PowerShell to dismount the USB Controller from the Hypervisor and attach it to the VM
$vmName = 'TvServer'
$pnpdevs = Get-PnpDevice -PresentOnly | Where-Object {$_.InstanceId -eq 'PCI\VEN_1912&DEV_0014&SUBSYS_00000000&REV_03\4&1B96500D&0&0010'}
$instanceId = $pnpdev.InstanceId
$locationPath = ($pnpdevs[0] | get-pnpdeviceproperty DEVPKEY_Device_LocationPaths).data[0]
Write-Host "    Instance ID: $instanceId"
Write-Host "    Location Path: $locationpath"

# Disable the Device on the Host Hypervisor
Disable-PnpDevice -InstanceId $instanceId -Confirm:$false

# Wait for the dismount to complete
Start-Sleep -s 15

# Dismount the Device from the Host Hypervisor
Dismount-VmHostAssignableDevice -locationpath $locationPath -Force

# Attach the PCIe Device to the Virtual Machine
Add-VMAssignableDevice -LocationPath $locationpath -VMName $vmName

# Note: You may need to reboot the Hypervisor hosts at this point.
# If the VM's device manager informs you that it can see the controller, but is  unable to initialise
# the controllers USB Root Hub. A reboot should fix it.
  1. Clip the DVBLogic TV Butler TV Tuners into the patch panel USB keystone jacks using the inside (top) port on the keystones
  2. Start the TV Server VM
Photograph of USB Tuners mounted in patch panel
The patch panel now has three USB ports – the left-most TV Butler is missing as the RMA replacement has not yet arrived.

Photograph of USB Tuners mounted in patch panel Photograph of USB Tuners mounted in patch panel

The Virtualised Windows 10 Streaming TV Server came back online and there hasn’t been any instability caused by the bus-powered USB controller. The TV Butler’s are warm to the touch, have plenty of air-flow and the ambient temperature can be monitored via existing sensors in the room.

The completed assembly in the Patch Panel

With any luck, I will not need to revisit this project for quite some time!

Creating a Virtual TV Streaming Server

In 2019, streaming your TV entertainment has become so popular that it is almost the norm. Systems such as Plex and Kodi create easy to understand, consistent and familiar cross-platform environments in which the whole family can consume media.
IPTV is an extension of such systems adding live broadcast playback and Personal Video Recorder (PVR) functionality. PVR adds the ability to watch, pause and record live TV; be it from aerial, satellite, cable or online sources. Many of these setups will use a local TV tuners plugged into a stand-alone media centre device. But what if you want to provide TV to multiple media centre appliances simultaneously? And what if you want that system to be a virtual TV streaming server instead of a dedicated streaming PC?

This article discusses how to create such a setup.

 

Why Virtualise?

I have spoken to a number of hardware and software providers in the course of this experiment. One thing that has been consistent has been their response: first laughter, followed by a dismissive “why would you want to do that?”.

Virtualisation is the process of taking what would be considered to be the work of a physical computer. Lifting it up and placing it – along with other workloads – onto another computer. This usually means that a single physical computer (a server) runs multiple, often different operating systems at the same time.

If you want to provide an always-on TV experience to multiple devices, then by definition this requires the TV server to itself always be on. In a non-virtual design, especially in a residential setting a non-virtual TV server may sit idle most of the day, until prime time.

Traditionally – and the way that the industry see it – you would introduce a dedicated TV server device. In an environment where already have an existing always on “24/7 devices – be it an existing server or NAS – virtualisation can allowing you to make use of your existing always-on hardware. Preventing you from having to introduce any new equipment. In essence, while your virtual TV server waits for prime time, the physical computer is doing other, more resource efficient things.

Virtualisation can therefore save you physical space (be it on the floor or in a rack). It can reduce equipment noise, reduce heat and most importantly, save power. It does so by encouraging you to spec correctly; leading to higher financial returns on equipment that you already own. So how do you create a virtual TV Server?

 

Virtualisation Platform

If you want to create a virtual TV server then, the platform that you choose to use will likely be the one you already have. It is easy to critique a solution and say that “you should be using something else”. Just as DVBLogic, Hauppauge and TBS have said I should use a physical device, I’ll get 50 emails telling me I should have used Proxmox, Unraid or Debian+KVM. I didn’t want to use those. I wanted to use Hyper-V.

Creating a virtual TV server is a lot easier in VMWare ESXi or KVM. Your hardware options are substantially broader due to feature maturity. For Hyper-V users, where Discrete Device Access (DDA) – Hyper-V PCIe pass through – was only introduced in 2016. The robustness of PCI Express pass-through is not yet mature and is cripplingly limiting.

Hyper-V’s issues stem from Microsoft’s design decisions. DDA follows a very robust, standards compliant implementation of the VT-d and PCI Express 3.0 specification. In 2019, most non-data centre/consumer level hardware is not manufactured to support these standards. Complicating it further, WHQL driver validation is not yet strict enough to ensure that drivers are fully compliant; and this is where most DDA related issues occur.

Hyper-V was designed to run Windows as efficiently as possible. This contrasts with their competitors, whose broader interest was to make the most efficient hypervisor platform on the market. DDA’s is a microcosm of Hyper-V’s core design limitations: Microsoft’s stated intention was to allow pass-through of select Graphic cards, GPU accelerators and NVMe controllers, not to create a robust PCIe pass-through solution. This in turn limits TV tuner hardware option.

 

Choosing TV Tuners

Once you understand your platform, it is important to choose your hardware accordingly.

The first discriminator will be to choose what broadcast standard you require: be it DVB-T, DVB-T2, DVB-S, DVB-S2, DVB-C, DVB-C2 or legacy Analogue.

Equally important will be matching the capabilities of your platform to the hardware device.

VMWare & KVM

VMWare and KVM derivatives offer a broader set of compatible hardware than Hyper-V. KVM is far more forgiving compared to its competitors – especially when running on non-server hardware. The chances of success are also greater if you intend to run a Linux distribution within your Virtual Machine, rather than Windows.

I have have had no luck with Hauppauge products in this regard, however there are some reports of success on-line with TBS. Comparatively, TBS offers a wider range of products, along with open source drivers. While out of reach to most users, this does offer the possibility of the community adding better support for virtualisation as platforms mature.

Reported examples of working hardware include the DVB-S2 TBS 6902 (see the comments and reviews section in the Amazon link). Despite few examples of success, getting a PCIe tuner to work reliably will remain difficult until the Tuner manufacturers migrate onto the PCI3 specification and are compelled (largely by Microsoft) to write compatible drivers.

If you wish to have a higher chance of success, with lower risk however, please follow my suggestions for Hyper-V.

Hyper-V

I was unable to get any PCIe tuner, from any manufacturer to work under Hyper-V Discrete Device Assignment (DDA). Windows VM’s would blue screen as soon as the kernel attempted to load the driver, while Linux VM’s – although stable – could not initialise the hardware device. In one set of tests, I was able to render the Hypervisor’s parent partition unusable for further testing as Hyper-V locked the hardware device and refused to release it.

After a full re-install, the situation was solved, however my testing reveals that Windows Server 2019 has not provided any improvement in using DDA with this type of legacy-bus hardware.

The solution to the problem was ultimately USB 3.0.

It is likely that your server motherboard has USB 3.0 ports on it. It is important to understand immediately that it is not possible for you to use these ports – in most cases. The embedded USB controllers on motherboards cannot usually be released to a VM by the your systems IOMMU gateway. Where they can be, it will be confusing as to which physical ports are in use, leading to difficulties in troubleshooting. Consequently, I suggest that you do not even try.

Using an inexpensive, off-brand PCIe controller from eBay . I was able to achieve a stable PCIe device pass-through with both Linux and Windows VMs under Hyper-V Server 2019. With this in place, it became possible to build a working virtualised TV Server solution.

 

The Software Design

Running on Hyper-V Server 2019. I installed a trial of DVBLogic’s TV Mosaic 1.0 into a Windows 10 Pro 1809 virtual machine.

TV Mosaic Screen Shot
TV Mosaic showing available DVB-T2 (Freeview HD) channels

DVBLogic’s trial activation system is not designed to expect to see virtual machines. Over the 3-4 months that I was experimenting, I expired trial activations for both TV Mosaic as well as its predecessor DVBLink. No matter what server, VM or physical location I tried from, I was unable to activate the trial again. If you wish to activate a trial on a VM. You will need to contact DVBLogic until such a time that they fix the issue.

 

The Hardware Design

Knowing that it would be necessary to replace my existing and PCIe TV Tuners with USB ones meant that I had to re-consider my design. In my original physical setup the HVR-4400 provided access to DVB-S satellite channels, with the TBS-6205 providing DVB-T2 coverage.

At the time, the only USB device that I could find to substitute the satellite tuner was the then new . The DVB-S2 device was well over £100 at the time (it has subsequently reduced considerably) and I was not willing to experiment on such a high cost tuner.

As I intended to use DVBLogic’s TV Mosaic for the project, I chose the DVB-T2 . Asking DVBLogic to support any issues would be easier if it was within their own range.

I did not want to run the TV signal down to the server rack, so chose to run the USB from the server to the signal amplifier in the attic. I purchased a good quality 5m USB 3.0 cable and a mid-cost 7 port powered hub. It was necessary to ensure that the hub used a USB type-B upstream connector to allow proper connectivity.

I already had the £12 USB 3.0 controller from a 2015 project. As will be discussed below. It is very important that the USB controller you pick has its own power connector on it. Do not rely solely on PCIe bus power.

The design was to run a single USB 3.0 5Gbps line into the attic to a powered USB 3.0 hub. The TVButler tuner would connect to the hub, and then take a short 2m coax run to the near-by signal amplifier. If the design worked. I would add additional tuners to the hub at a later time; including possibly restoring satellite connectivity.

USB 3 Hub and TV Tuners
StarTech ST93007U2C USB 3 Hub and 3x DVBLogic TVButler TV Tuners

 

The Final Specification

  • SuperMicro X11SPL-F
  • Intel Xeon Silver 4108
  • Noctua NH-U12S DX-3647, 120mm cooler for Intel Xeon LGA3647
  • Kingston Technology KSM26RD8/16MEI 16 GB DDR4 2666 MHz ECC, CL19, 2RX8
  • SuperMicro AOM-TPM-9670V-S Vertical TMP 2.0 Module
  • STW USB 3.0 PCIe dual port USB 3.0 5Gbps controller
  • StarTech ST93007U2C 7 Port USB 3.0 Powered Hub
  • 4x DVBLogic TVButler USB TV Tuners
  • LINDY Anthra Line 36744 USB 3.0 Type A to B Cable

 

Troubleshooting

The follow are the two main issues that I encountered when implementing the Virtual TV Server.

Single Tuner Dropouts: USB Bus Power

It was able to see the TVButler Tuner and it had a strong signal, but it would drop out after a few minutes of playback. The VM had to be rebooted to restore functionality. I removed the hub and extension cable and temporarily ran the signal down to the server rack. The issue persisted.

In my haste to minimise the hypervisors downtime. I had neglected to fit the USB 3.0 controller’s power connector. Despite using a mains powered hub, the solution was unstable. After connecting the power supply, the issue went away completely and in single tuner mode, it was stable.

 

Multiple Tuner Dropouts: All hubs are not created equally

After purchasing several additional TVButler tuners I setup the hub in the attic. Every 36 hours or so, I would discover that one or more of the Tuners was missing from TV Mosaic. Further investigation revealed that the tuner was missing from Windows device manager. 1 out of every 8 reboots would temporarily fix the problem.

7 out of the 8 restarts, would usually result in the driver for the bottom TV Tuner on the hub failing to load with “error 10”. Additional testing revealed that all of the tuners worked individually, as did the extension cable.

When it did work, HD channels would not play at all and SD channels would artefact as frequently as every 10 seconds.

The clue came from watching the hub while the VM rebooted. As the VM restarted, the ‘device present’ LEDs would flicker. When the reboot worked, the tuners would initialise in descending order and the LEDs remained lit. When it didn’t, the lights would enumerate randomly, flicker and, after a few seconds, the last device on the £24 RSHTECH 7 port powered hub would blink out.

Although mains powered, the flickering suggested that it didn’t have sufficient current to support the load. I swapped in a 2 port StarTech hub from my desk and with 2 tuners present and had no issues. Returning the RSHTECH it to Amazon, I ordered a – at more than double the price.

The ST93007U2C worked perfectly. All of the tuners worked properly and there were no issues at reboot.

 

Conclusion

As I conclude this article, the system has been in place for nearly 2 months. I have licensed TV Mosaic onto the Windows 10 VM to get around the trial issues, and it has been performing as well as I had hoped.

The Windows VM’s current uptime is 31 days, 8 minutes and at no point during the last two months have I experienced any crashes from the VM or hypervisor. Picture quality is excellent and I have artificially stress tested it to well beyond even its worst case ‘general’ use several times – with all tuners playing back HD channels while TV Mosaic transcodes the streams.

To an Intel Xeon Silver 4108, this worst-case work load is virtually irrelevant.

At idle, the server sits at around 44w, with typical non-TV load pulling 52w. Turning the TV Server VM on or off makes no difference to this figure. When TV is playing-back, this figure may rise by 8-16w. Contrast this with the old physical server, which was drawing 60-80w at all times. As a Windows 10 machine, it couldn’t function as a true server. Consequently, the Xeon Silver server would also be on anyway, taking mean idle load up to around 115w. The 71w saving (115w-44w) equates to an energy cost saving of just under £100-per year.

I spent £210.25 in total on this project, meaning that it will have paid for itself in fractionally over 2 years. If I factor in income from selling the old tuners and physical PC, I will have already broken even. So to DVBLogic, TBS and Hauppauge, all of whom queried with me the sanity of wanting to Virtualise a TV Server. You have your answer.

You can virtualise a TV Server, even on Hyper-V and, if you already have a always on “24/7” virtualisation stack. There is a good reason to do it.

Installing Plex Media Server on Windows Server 2016 or Windows Server 2019 Core

System Requirements

  • Windows Server Core
  • Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server 2019
  • Plex Media Server

 

The Problem

“Just because you shouldn’t do something, doesn’t mean you can’t”

Plex Server, the sometimes controversial media streaming hub, is a staple of the media diet of many home-brew media centre connoisseurs. I personally keep it installed as a gateway between Smart TV’s and my music/video/photo library as it is a convenient way of getting DLNA support on the network. Where pushed due to lack of Kodi support Plex also gives a consistent alternative front-end user interface.

The problem with Plex Server is that it isn’t quite a “server”. It’s a service, but one that insists on running in the userland (as a tray icon). If you log off from its user account, it shuts down the service and you no longer have a working Plex environment.

 

Why is this a problem?

At home, the only computers that I have running 24/7 are servers and these are exclusively Hypervisors. I want Plex to be always on, but not to be sharing a with VM performing other duties. Neither do I want it be forced to leave a logged-on VM running that does something else and thus increases the attack vector.

To date, my answer has been to run Plex Server in a Windows 10 VM, but this means consuming a £120+ Windows 10 Pro license so that it can effectively molly-coddle a tray icon.

Ah ha! I hear you cry. How is consuming a £900 Windows Server license any better?

It’s not, obviously… unless you’ve got Windows Server Data Centre licenses. If you fall into this category, it literally doesn’t matter how many VMs you install on your hypervisor. The argument is academic as long as your have the horsepower on your server to keep piling on additional VMs.

More commonly however, and perhaps more practically. You may find that you have some old Windows Server 2012, 2012 R2 or 2016 Standard licenses knocking around from recent server decommissions. This may become more common again as your organisation starts migrating to Windows Server 2019.

The advantage of using even a down-version of Windows Server comes in the fact that versions of Windows from 2012 upwards all remain part of the Microsoft Long-term Servicing Branch (LTSB) support model. Consequently, by re-using the licenses your Plex install will receive security patches for many years to come, while remaining lighter than a client edition of Windows and – in the cae of Windows 10 – will save you from the 6-monthly ache of having to Feature Update Windows 10. In other words. Server Core gives you a stable platform to ‘set it and forget it’.

So, for these minority edge cases, an experiment was born to see Plex Media Server could in fact run on Windows Server Core.

 

Why Windows Server Core?

Partly because I’m a stickler for pain and partly because at ~5GB (Windows Server 2019), it represents a considerable disk and resource saving over the ~18GB of Windows 10. My Windows 10 VM Plex Server install, with Windows 10 Pro, Plex and its various database (but no local media assets) weighed in at 33GB (after defragging and compressing). Its RAM utilisation typically sitting between 1.4 GB and 1.8 GB (remember that it’s sitting at a user account lock screen most of the time, but a user is logged on non the less).

This gives us some numbers to define relevant success or failure of the experiment against.

 

How To

The new VM was setup with the following specs:

  • 3 CPU Cores*
  • 1024 MB Startup RAM with dynamic memory between 400 MB and 2048 MB
  • A 127 GB dynamic VHDX
  • Connected to the correct network
  • Set (in my case) to PXE boot and install from my build server
  • Windows Server 2019 Core as the install source

*I find that at 2 cores, Plex rides the CPU at 90% during library updates. With 3 cores, it is usually sub 40% and does make use of the available thread afforded from the extra CPU.

 

Minimising

Firstly, remove any unwanted Windows Features. My build server is configured to enable several features by default, so we’ll strip these off. Fewer features and less services mean a leaner VM footprint. Use Get-WindowsFeature in PowerShell* to view the state of play with yours and remove as appropriate. For example

Remove-WindowsFeature -Name Hyper-V

Remove-WindowsFeature -Name Windows-Defender

* At the comment prompt type “start powershell” and hit enter to launch a PowerShell console.

Simiarly, go through Get-WindowsOptionalFeature -online | ? {$_.State -eq 'Enabled'} to check for more things to disable e.g.

Disable-WindowsOptionalFeature -online -FeatureName <name>

As well as Get-Windowscapability -online | ? {$_.State -eq 'Installed'}

Remove-WindowsCapability -online -Name <name>

… and Get-WindowsPackage -online | ? {$_.PackageState -eq 'Installed'} using

Remove-WindowsPackage -online -PackageName <name>

Note: Do not remove WOW64 from the install as you will require it to run Plex.

 

Preparing

If you aren’t automated, patch it, join it to the domian and make any registry and config changes that you need (such as IP addressing and enabling Remote Desktop).

Decide what account your Plex Server install will run in. Obviously, you’ll be sitting in an administrator account after install, and you don’t want to run Plex in that! I have a user account on the domain that has minimal permissions and access to multimedia shares. You should decide what will work for you.

Set the Windows Firewall so that you can perform remote management. Here are some examples of functions that you may wish to enable (they may differ depending on the Windows Server Edition). We need to enable File and Printer Sharing (SMB) access so that we can copy the Plex installer over to the VM from a management workstation.

enable-netfirewallrule -displaygroup "Core Networking"

enable-netfirewallrule -displaygroup "File and Printer Sharing"

enable-netfirewallrule -displaygroup "Network Discovery"

enable-netfirewallrule -displaygroup "Performance Logs and Alerts"

enable-netfirewallrule -displaygroup "Remote Desktop"

enable-netfirewallrule -displaygroup "Remote Event Log Management"

enable-netfirewallrule -displaygroup "Remote Event Monitor"

enable-netfirewallrule -displaygroup "Remote Scheduled Tasks Management"

enable-netfirewallrule -displaygroup "Remote Service Management"

enable-netfirewallrule -displaygroup "Remote Shutdown"

enable-netfirewallrule -displaygroup "Remote Shut-down"

enable-netfirewallrule -displaygroup "Remote Volume Management"

enable-netfirewallrule -displaygroup "Windows Firewall Remote Management"

enable-netfirewallrule -displaygroup "Windows Remote Management"

enable-netfirewallrule -displaygroup "Windows Management Instrumentation (WMI)"

enable-netfirewallrule -displaygroup "Windows Backup"

Before you can run Plex Server, you will also need to enable Windows Media Foundation services.

Add-WindowsFeature -Name Server-Media-Foundation

Now jump to a Management machine, something with Windows 10 1809 and RSAT installed on it.

On the management machine, open Computer Management from the start button right click or by calling the MSC. Right click on “Computer Management (Local)” at the top of the left-hand pane and connect to the machine by hostname or IP Address. You can now:

  • Manage Task Scheduler
  • View the Event Logs
  • Manage Shared Folders
  • Manage Local Users & Groups

Note: If you are in a workgroup, you need to ensure that the user account and password used to open Computer Management matches the administrator account on the Plex VM. Otherwise you will see ‘Access Denied’. You will also need to have setup WinRM, which is beyond the scope of this article.

 

Auto Log-on

Installing on Windows Server will not change Plex’ behaviour. It will still run as a tray service even though there isn’t a systray to display its icon in. This means that the virtual machine must auto log-on at reboot in order to start Plex Server’s services.

To set auto-logon, from an administrator account add the following registry material.

Note: You can type regedit at the command prompt to gain access to the standard Windows registry editor if you prefer to do it manually.

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon" /t REG_SZ /v "DefaultUserName" /d "Plex" /f

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon" /t REG_SZ /v "DefaultPassword" /d "your_password_here" /f

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon" /t REG_SZ /v "DefaultDomainName" /d "your_domain_here" /f

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon" /t REG_SZ /v "AutoAdminLogon" /d "1" /f

To test whether you have successfully setup auto-logon, simply reboot the server VM.

Note: The password is inserted in fully readable plain text in the registry. Keep that in mind when designing the security for this account!

 

Install Plex Media Server

Use the following process to install Plex on the new Windows Server Core VM:

  1. Log onto the VM using your preferred Plex user account. For the rest of this article we will call the username for that account “Plex”. This is to create the user account structures.
  2. Download the latest Plex Server installer file from www.plex.tv.
    Note: For some silly reason at the time of writing, the download link is in the page footer with the copyright. It’s almost as if they don’t want you to download it… but I digress.
  3. In file explorer on the management machine, open a SMB share to the VM either using \\<FQDN>\c$ or \\<ipAddress>\c$. Copy the Plex installer file into \\<host>\c$\Users\Plex
  4. Return to the VM via Remote Desktop or your Hypervisor, and ensure that you are logged on as the Plex user account. You should be a command prompt “C:\Users\Plex>”
    1. If your user account is a member of the local administrators group: Type “Plex” and hit tab, it should auto complete the full file name of the Plex installer and hit return e.g.
      Plex-Media-Server-1.14.0.5470-9d51fdfaa.exe
    2. If the Plex account is a standard user: Type “runas /noprofile /user:domain\adminUsername Plex-Media-Server-1.14.0.5470-9d51fdfaa.exe” and hit return.
  5. Should you receive any errors from the installer, you can access the log file via the management machine at the following path to troubleshoot the problem:
    \\<host>\c$\Users\Plex\AppData\Local\Temp

Once the installer has finished, the Launch button will not doing anything as it is attempting to start the default web browser – and there isn’t a default web browser on Windows Server Core. Simply exit the installer to complete the installation.

 

Post-install

At this point you will have the Plex Server binary files installed, however unlike on a GUI install, Plex will not yet function correctly.

 

Drive Maps

Should you need to set up drive maps for media content you can use group policy or create local account mapped shares to your media files using

net use <driveLetter> \\server\share /persistent:yes

 

Auto-Start

Now that Plex is in installed, it is necessary to start its processes. As Windows Explorer (and the startup folder) does not exist to do this for us, you will have to set it up manually.

The obvious way would have been to use task scheduler.

SchTasks /Create /SC ONLOGON /TN "Plex Server" /TR "C:\Program Files (x86)\Plex\Plex Media Server\Plex Media Server.exe"

However, I was unable to get the event to fire at logon and the service never started.

Equally, I was unable to get an auto-run working from HKCU\Software\Microsoft\Windows\CurrentVersion\Run on a non-administrative account, although your mileage may vary if you are using an administrative account.

In the interest of time, the quickest way to achieve this is to use the following procedure:

  1. Log in as a system administrator
  2. Open Regedit
  3. Navigate to:
    HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\AlternateShell\AvailableShells
  4. Right click on the AvailableShells key, click Permissions…
  5. Click Advanced
  6. Change the Owner to the administrators group and cascade the ownership change to sub-objects
  7. Set the Administrators group to have Full Control of ‘This key and subkeys’
  8. OK back to Regedit
  9. Edit the REG_SZ under AvailableShells so that you add cmd.exe /k “C:\Program Files (x86)\Plex\Plex Media Server\Plex Media Server.exe” into the Value data string e.g.
    cmd.exe /c "cd /d "%USERPROFILE%" & start cmd.exe /c "C:\Program Files (x86)\Plex\Plex Media Server\Plex Media Server.exe" & start cmd.exe /k runonce.exe /AlternateShellStartup"
    Note: The last command (each & is the start of a seperate command) to be executed will be the window on top after the boot completes.

Note: You cannot use SC as a mechanism to invoke the auto-start as Plex requires the user account to functionally access remote file shares. If all of your media is stored locally on the Plex Server VM then technically you could use SC and in this case you would not need to auto-logon the VM at all.

If you log-off and log-on again you should get the Plex Media Server.exe process running in taskmanager.

 

Adding the ability to Shutdown the VM

If you want your non-administrative user to shutdown the VM without having to log-off, log onto an administrator account and then perform the shutdown. You need to modify the local security policy (or Group Policy) to grant your low security account this right.

You can either

  1. Export a modified policy as a template from your management machine in Local Security Policy (Security Settings > Local Policies > User Rights Assignment > Shut down the system) and then import it onto the Windows Server Core VM using secedit /configure /cfg <exportFilePath> /db secedit.sdb
  2. Use ntrights.exe from the Windows Server 2003 Resource Kit Tools and issue the command ntrights.exe -U "domain\username" +R SeShutdownPrivilege

Download: Windows Server 2003 Resource Kit Tools

 

Open Plex

To start using Plex as part of a new install. Return to your management machine and open a web browser and navigate to:

http://<ipAddress>:32400/web/

You should be presented with the beginning of the Plex configuration wizard in your browser. Do not not be surprised if Plex knows who you are based upon your IP address if you are an existing user. You should be able to  sign-in and configure Plex as required based on it being a new install.

 

Migrating your Plex Server

If you wish to migrate an existing Plex Server into the VM, use the following procedure to perform the migration:

  1. Ensure that both source and destination Plex Installs are running the same version
  2. Shutdown the Plex Media Server processes on both the source and destination Plex Installs by entering
    net stop PlexUpdateService
    tskill "Plex Media Server"
    tskill "PlexScriptHost"
  3. On the old server, export the entirety of the “HKEY_CURRENT_USER\Software\Plex, Inc.” registry key and import it onto the new server
  4. On the new server, rename “C:\Users\Plex\AppData\Local\Plex Media Server” to “C:\Users\Plex\AppData\Local\Plex Media Server-OLD”
  5. Copy the “C:\Users\Plex\AppData\Local\Plex Media Server” folder from the old server to the new server. This folder will be very large and the copy will be very slow as it contains a large number of files and folders. In my case some 662,915 files and folders totalling around 18 GB.
  6. Ensure that your old Plex install remains offline
  7. Reboot the new Plex VM
  8. Test
  9. Delete “C:\Users\Plex\AppData\Local\Plex Media Server-OLD”

 

The Results

At the beginning of the article, I outlined that the old Windows 10 VM disk was sitting at 33 GB with typical idle RAM use sitting around 1.4 GB.

After defragging and compressing the virtual disk for the Windows Server Core VM, the VHDX file size was 27 GB; a small improvement. RAM use was also better. Typical idle values of around 550 MB matched library updates sub-720 MB and observed highs around 900 MB.

Boot times for the VM are considerably faster compared to Windows 10, not that it is especially important for media consumption. As an early superficial observation, the library load times between a Smart TV and the Plex DLNA enumeration service appear snappier than under the previous install. I leave that as a subjective and not an empirical observation however.

So is it worth it? The answer to this should depend on your comfort level with managing Windows Server Core. If you want to play with Server Core to learn it, or are already familiar with it, then it is worth considering for the RAM saving alone. The promise of a long-term stable platform under LTSB servicing does allow you to “set it and forget it” and, if like me you are fed-up of contending with large 6-monthly full reinstalls of Windows 10 for no intrinsic gain. It really does offer a streamlined way to host Plex.

With that said, you do lose three practical things by using Server Core and not much else

  1. The omnipresent tray icon which lets shortcut into the web GUI or manually initiate library scans (all of which you can do from the web UI).
  2. The ability to open the web UI on the VM itself is lost.
  3. Being able to troubleshoot with a GUI in Windows Explorer is occasionally useful. You must now use an intermediate management machine/VM to do this. For any admin who already manages Server Core, they will already have this environment. They will also be used to viewing the local server console as a weapon of last resort, not first resort as will be the case with the majority of GUI administrators.

Once working on Server Core, Plex is essentially managed exclusively through the web UI. There are only very occasional needs to interact with Windows Installer on the console during version upgrades. If you want your Plex VM to do something other than just Plex, then it probably isn’t worth considering going down this route. Should you think like a server admin however and prefer task isolation, then why do you need a GUI, Game Bar and Candy Crush saga to server multimedia content to your TVs? If you think like a savvy consumer, why do you need the extra licensing overhead?

DVBLink 6.0.0 DVB-T/T2 Freeview HD Crystal Palace Channels Missing after tuning

System Requirements:

  • DVBLogic, DVBLink 6.0.0
  • Be in the London Region tuning against Crystal Palace

The Problem:

After tuning DVBLogic DVBLink against Crystal Palace, you are missing a number of channels from the channel list despite having a strong signal. the missing channels may include:

  • 5STAR + 1
  • BT Showcase HD
  • Forces TV
  • FreeSports
  • More4+1
  • PBS America
  • QVC Beauty HD
  • QVC HD
  • Rocks & Co 1
  • London Live
  • POP Max
  • Sony Movie Channel+1
  • The Vault
  • Tiny Pop
  • True Crime
  • True Movies

More Info

The transponder definitions provided for Crystal Palace within DVBLink are currently out of date. consequently, DVBLink only scans 7 transponders instead of the current 9 on the transmitter.

The Fix

You can add the missing transponder data by following the following steps:

  1. Open the DVBLink TVScource configuration web interface and log-in if applicable
  2. Ensure that the “Advanced mode” check box in the top right corner is selected
  3. Go to Sources > TV Sources
  4. Click the config (spanner) icon next to your tuner/tuner group for Freeview
  5. Select search channels
  6. Under ‘select your TV provider’ choose “DVB-T UK (Crystal Palace)” and click next
    Note: The specific transponder settings below will not work for other transponders, however if you can identify transponders for another transmitter, the process is identical
  7. On the left hand side of the current screen there is a long, vertical black bar. Click on it!
    Black bar
  8. At the bottom click the “Edit transponders” button
  9. Add the two missing transponders to the end of the list:
    Note: This is valid as of January 2018, in the future it is liable to change.8=538000,H,9600
    9=586000,H,9600The entire configuration should look like:
  10. click ‘save’
  11. Click the ‘scan’ button on the right hand side of the screen
  12. TVSource will now add the missing channels (16 in my case) to the system
  13. Press OK and configure the new channels as normal