Powerline Comparison of Features & Functionality: Expanding your Powerline Adapter Home Network

If your home or small business has a Powerline network, there may come a time when you wish to expand your network. This could be to add wired connectivity in a different room or to a new WiFi access point. Offering better coverage for mobile and fixed wireless devices than your main router can provide.

It is not always clear from the manufacturers site which part number(s) you should buy in order to expand your existing network. Most Powerline units are sold as initial getting started kits only with little information on how to grow your network.

This Powerline Adapter Comparison attempts to simplify the options in making Powerline product choices.

 

Contents

The following seeks to clarify some easily misunderstood and often muddied points about Powerline.

Feature Comparison

The Powerline Comparison is divided into comparing the Powerline Adapter ranges of the six main Powerline manufacturers.

Common Questions

  1. How many adapters do I need?
  2. Can I mix and match different manufacturers adapters?
  3. I can get a 2000 Mbit/s Powerline adapter, seems like a no brainier to make my computer/Internet faster?
  4. When shouldn’t I use Powerline adapters?
  5. What should I tell my electrician if I’m having work done?

Feature Comparison: Expanding Your Network

The following table can be used to help you expand your Powerline network. For each manufacturer they show the combination of WiFi, Ethernet Port Numbers and Passthrough Port availability. Manufacturers are displayed in alphabetical order.

Passthrough: Passthrough means that there is a standard electrical socket on the front of the Powerline adapter, allowing you to plug the Powerline adapter into the wall without sacrificing access to the electrical socket for other devices.

e(#) = 1Gbps Ethernet

e(#) = 100Mbps Ethernet

(#) represents the number of Ethernet ports present on WiFi adapter modules

Amazon Logo Search for/buy on Amazon (and help support this site)
eBay Logo Search for/buy on eBay (and help support this site)

Asus

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
4 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
AV1200 1200 PL-AC56 (802.11ac 867) e(3)
PL-E56P e(1)
AV600 600 PL-E52P e(1)
AV500 500 PL-N12 (802.11n 300) e(2)
PL-E41 e(1)
PL-X51P e(4)
AV200 200 PL-X31M e(1)

BT

BT Powerline adapters are not internationalised and only come with UK 240v plugs.

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
1200 1200 11ac Dual-Band Wi-fi Extender 1200 080462 (802.11ac 867) e(1)
1000 1000 Wi-Fi Home Hotspot 1000 088156 (802.11ac 583) e(1) Broadband Extender 1000 088158 e(1) Broadband Extender Flex 1000 080219 e(2)
1000 600 11ac Wi-Fi Home Hotspot Plus 1000 080461 (802.11ac 867) e(1) Mini Connector 087372 e(2)
750 750 11ac Dual-Band Wi-Fi Extender 750 85854 (802.11ac 733) e(1)
600 600 Dual-Band Wi-fi Extender 610 083530 (802.11n) e(1) Broadband Extender 600 084284 e(1) Broadband Extender Flex 600 084285 e(1)
Wi-Fi Home Hotspot Plus 600 084286 (802.11n) e(2)
Mini Wi-Fi Home Hotspot 600 084288 (802.11n) e(2)
300 300 Essentials Wi-Fi Extender 300 088159 (802.11n)

D-Link

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
AV2000 1900 DHP-701AV e(1)
AV1000 1000 DHP-W610AV (802.11ac 867) e(1) DHP-601AV e(1) DHP-P610AV e(1)
DHP-W611AV (802.11ac 867)
e(1)
DHP-P601AV e(1)
AV500 500 DHP-W310AV (802.11n) e(1) DHP-P509AV e(1)
AV200 200 DHP-309AV e(1)

Devolo

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
dLAN 1200 1200 dLAN 1200+ e(1) dLAN 1200 triple+ e(3)
dLAN 1000 1000 dLAN 1000 duo+ e(2)
dLAN 650 650 dLAN 650+ e(1) dLAN 650 triple+ e(3)
dLAN 550 550 dLAN 550 duo+ e(2)
dLAN 500 500 dLAN 500 duo e(2)

NetGear

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
PL2000 2000 PLP2000 e(2)
PL1200 1200 PL1200 e(1) PLP1200 e(1)
PL1000 1000 PLW1000 e(1) (802.11n 300) PL1000 e(1) PLP1000 e(1)
PLW1000v2 e(1) (802.11n 300)
PLW1010 e(1) (802.11ac)
PLW1010v2 e(1) (802.1ac)
PL500 500 XWN5001 (802.11n 300) e(1) XAVB5101 e(1) XAVB5401 e(1) XAVB5602 e(2)
XAVB5201 e(1)
XWN5021 (802.11n 300) e(1) XAVB5221 e(1) XAVB5421 e(1)
PL200 200 XAVB1301 e(1)

TP-Link

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
AV2000 2000 TL-WPA9610 (802.11ac 1200) e(1) TL-PA9020 e(2) TL-PA9020P e(2)
AV1300 1300 TL-WPA8630P (802.11ac 1350) e(1) TL-PA8010P e(1)
AV1200 1200 TL-WPA8730 (802.11ac 1750) e(3) TL-PA8010 e(1) TL-PA8030P e(3)
TL-WPA8630 (802.11ac 1200) e(3)
AV1000 1000 TL-WPA7510 (802.11ac 433) e(1) TL-PA7010 e(1) TL-PA7010P e(1) TL-PA7020 e(2) TL-PA7020P e(2)
AV600 600 TL-WPA4220 (802.11n 300) e(2) TL-PA4010 e(1) TL-PA4010P e(1) TL-PA4020P e(2)
AV500 500 TL-WPA4530 (802.11ac 433) e(3) TL-PA4010 e(1) TL-PA4020P e(2)

TRENDnet

WiFi
1 Port Ethernet
2 Port Ethernet
3 Port Ethernet
4 Port Ethernet
Range Max Speed Mbit/s No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through No
Pass-through
Pass-through
1300 AV2 1300 TPL-430AP e(3) (802.11ac 866) TPL-422E e(1) TPL-423E e(1)
1200 AV2 1200 TPL-420E e(1) TPL-421E e(1)
500 AV 500 TPL-410AP e(2) (802.11n 300) TPL-408E e(1) TPL-407E e(1) TPL-405E e(4)
TPL-406E e(1)
TPL-401E e(1) TPL-4052E e(4)
200 AV 200 TPL-331EP e(1)

e(#) = 1Gbps Ethernet

e(#) = 100Mbps Ethernet

(#) represents the number of ethernet ports present on WiFi adapter modules

Amazon Logo Search for/buy on Amazon (and help support this site)
eBay Logo Search for/buy on eBay (and help support this site)

 

Buying Tips & Recommendations

If you are using the Powerline Comparison to create a new or expand an existing network. The following tips may offer some guidance.

  1. If you live in a flat, apartment, communal living (e.g. Student accomodation) ony consider devices with AES encryption.
  2. When expanding your existing network consider now whather you want to start swapping out any older devices. If you do, stick to the same manufacturer, but go to their newer models. If you do not, stick to the same manufacturer and range for the best  interoperability.
  3. Wired Powerline network users should only consider new adapters with 1Gbps ethernet. The adapter should have a minimum Powerline bandwidth of 1000 Mbit/s.
  4. If you intend to create a wired network with more than two wired ethernet device connected, and will be making non-Internet file transfers (e.g. backing up to a NAS or PC to PC file copy). Only look at the 2000 Mbit/s Powerline ranges.
  5. When creating a new wireless Powerline network. Only look at the 802.11ac ranges.
  6. If your broadband Internet connection is fast (e.g. true fibre optic) ideally do not let any single part of the Powerline network be slower than your broadband connection.

 

Common Questions

How many adapters do I need?

It is not always clear to new users starting out with Powerline adapters that you can expand the network beyond the first two appliances that you will probably have (or will) purchased in a starter kit bundle.

Powerline is in essence a broadcast technology, meaning that it is not limited just to the first two devices that you place in your home. Neither is is necessary to operate any subsequent device that you add in a pair of devices – so you do not have to have 4,6,8 adapters live at any one time and can just as easily have 3, 5 or 7 adapters live on your network.

You do have to have more than 1 adapter however!

 

Can I mix and match different manufacturers adapters?

‘Powerline’ is a technical standard, not a proprietary solution to each manufacturer – although they may add proprietary innovations on top of the standard. This means that in practice you should be able to mix and match Powerline devices from different manufacturers on your network provided that the product is advertising standards compliance to the following certification combinations.

Standard Max Line
Speed (standard)
Max Client
Speed (standard)
Backwards Compatibility Notes
IEEE 1901 500 Mbit/s
IEEE 1905.1 / nVoy HomePlug n/a The standard for Powerline + Wifi devices
HomePlug 1.0 14 Mbit/s IEEE 1901
HomePlug 1.0 turbo 85 Mbit/s IEEE 1901
HomePlug AV 200 Mbit/s 80 Mbit/s IEEE 1901, HomePlug 1.0 (in theory) ‘AV’ standard for Audio/Video
HomePlug AV2 1000 Mbit/s IEEE 1901, HomePlug AV, HomePlug 1.0 (in theory)

Being standards compliant does not mean that an individual manufacturer or model of Powerline adapter will actually meet the performance levels prescribed by the standard. It also does not prevent the adapter from exceeding the standard either under conditions defined by the manufacturer.

The standard exists to ensure that if you mix your ecosystem, you can expect that under optimal conditions, the devices will operate at the speed advocated for by the standard – but not (necessarily) at the maximum capable speed of both/either device. Conversely, if you do not mix your ecosystem, and only use devices made by manufacturer x, your realised real-world performance may instead be higher than that advocated for by the standard. Consequently, it is generally recommended that where possible you stick to the same manufacturer for your Powerline network and ideally the same series/range of device.

 

I can get a 2000 Mbit/s Powerline adapter, seems like a no brainier to make my computer/Internet faster?

Having looked at many reviews and videos on the subject, this topic is horribly misunderstood by people ‘in the know’ to the extent that they are further confusing the issue with false information. There are 5 aspects that influence why a typical single computer/single WiFi Extender scenario isn’t in most cases going to mean a 2000 Mbit/s solution will deliver.

Electrical wiring, distribution, electrical noise and distance: The age and quality of your home electrical system will have an impact on the performance. If your electrical system isn’t up to 2000 Mbit/s, you will never see anything like that speed, possibly pulling the performance down under 100 Mbit/s. Equally, the longer the distance between the adapter termination points, the more this figure will trail off.

IEEE 802.3 (ethernet): If you are going to connect your desktop PC at one end to your router at the other (and you have modern equipment) then the Ethernet cable and the network adapters at your computer/router are only capable of a theoretical maximum of 1000 Mbit/s. Having a 2000 Mbit/s Powerline adapter will not make this point-to-point, two device network any faster even if the Powerline adapter does operate at a speed higher than 1000 Mbit/s.

IEEE 802.11 (wireless): Similarly to that of the Ethernet, wireless technology is also rated at a maximum theoretical speed 54 Mbit/s for 802.11a/g, 11 Mbit/s for 802.11b, 600Mbit/s for 802.11n and up to 3466 Mbit/s for 802.11ac – in practice it usually isn’t more than ~ 1300 Mbit/s on current generation general consumer hardware. If the WiFi Access Point module on the Powerline adapter is only capable or 600 Mbit/s or your laptop/tablet/smartphone are only capable of 600 Mbit/s, having a faster Powerline adapter will not make your wireless any faster.

Internet Connection Speed: Most home installs are probably just being used to push the Internet connection arriving at your router a little further into your property, usually because you need it to reach into another room that is out of range of the existing wireless access point. Most home internet connections (in the UK) at the current time run at sub-100 Mbit/s. Assuming that your Powerline adapter is 2000 Mbit/s, your wired desktop is 1000 Mbit/s and your tablet is 600 Mbit/s, you will not get anything faster from the Internet than the 100 Mbit/s maximum speed of your home broadband. A faster Powerline adapter can not improve the spped of your actual Internet connection to the street.

Contention: This is the most important one that people misunderstand. Powerline is what is known as a contended broadcast medium. This means that every piece of information sent to one Powerline adapter is received and processed by all of the other Powerline adapters on the network. If you have 4 Powerline adapters that try and access the network simultaneously, then the available maximum bandwidth (e.g. 2000 Mbit/s) must be shared between them. There are more sophisticated underlying technologies in newer Powerline adapters, such as OFDM and latterly MIMO that significantly help to improve this, however the key thing to understand is that the 2000 Mbit/s figure on the box is the speed available to the holistic group of all Powerline adapters on the network and must be shared amongst all termination points.

In the case of OFDM bandwidth is shared as a proportion of the total frequency spectrum available to each adapter while in the case of MIMO it is shared up to the number of available MIMO channels. For very old adapters, the full bandwidth was available, but only one Powerline adapter could communicate on the network at any one time; during which time the other adapters had to wait.

At the beginning of this section I stated that getting faster network performance it isn’t a reality in most cases. So where is it a benefit?

The benefit of having the faster line speed (the maximum theoretical bandwidth available to the group of Powerline adapters) is when there are multiple end-point devices and/or multiple Powerline adapters.

Take a scenario where Internet access is removed from the equation and pretend that there are 4 Powerline adapters, A, B, C and D. Each Powerline adapter has a single wired ethernet connection running at 1Gb/s (1000 Mbit/s). If computer A copies a file to computer B while computer C copies a file to computer D and you have 2000 Mbit/s available to the Powerline network, simplified, a 1000 Mbit/s file copy + another 1000 Mbit/s file copy (with access to MIMO) = 2000 Mbit/s. So the 2000 Mbit/s adapter will in theory allow both copies to occur at the 1Gb/s line speed (full speed).

Again, this is a theoretical figure and there are a lot of variables that will define the actual speed. In reality you may only get 800 Mbit/s during the parallel transfer (1600 Mbit/s total), but this is only achievable because the Powerline back-end is capable of supporting the higher line speed. If the Powerline network was only itself capable of 1000 Mbit/s, then the best you could have hoped for during this parallel file transfer would have been 500 Mbit/s. This is the impact of contention.

In practice, there are a lot of tweaks and optimisation’s to how OFDM, MIMO and proprietary manufacturer innovations are applied on different products. These tweaks make the examples that I have outlines significant simplifications over what may actually be going on in any given Powerline adapter. It is also true that the Powerline network will likely not run anywhere near its theoretical maximum speed, bringing down the contended bandwidth figure that you are starting out with.

In these cases a faster device with MIMO and more frequency groups available may help you to realise slightly faster speeds. It is however important to understand what the figure on the box is actually telling you -and- to set expectations (and even save money) with end users.

Simply put: If you are only looking to have a point to point link and are only ever going to be using it to access the Internet there is usually little point spending money on faster Powerline modules for your use case.

 

When shouldn’t I use Powerline adapters?

Powerline should not be used if:

  1. You are involved in any form of secure network or secure data workflow. Powerline can easily leak data to your neighbours or into the street. Modern adapters usually come with AES 128 encryption support as an option, however AES 128 is not the strongest form of encryption by any means here in 2018. Equally, firmware updates and patches for Powerline adapters to fix security holes are not applied automatically. Unfortunately, neither are they made available by some manufacturers as frequently as they should be.
  2. If AES Encryption technology is illegal in your country: do not use an AES enabled device.
  3. You do not have direct access to a wall socket: Powerline adapters should not be used on power gangs, PDU’s or through surge protectors. If you do, at best they will either have significant signal degradation or will not work.
  4. If the length of your internal wiring is over 300m (try and keep it far shorter than this in practice i.e. under 200m).
  5. Your house has extremely old wiring or archaic distribution / fuse boards.
  6. You want to get a good signal across multiple distribution boards / fuse boards.
  7. The electrical system has a high number of noisy appliances and you are expecting to get performance out of the system.

 

What should I tell my electrician if I’m having work done?

If you are having work done or want to get an electrician in to troubleshoot poor Powerline adapter performance. Offer them the following tips and get ready with a laptop, ethernet cable and a test plan (e.g. SpeedTest.net, benchmark tool or a consistent large file copy).

  1. The electrician needs to provide a low-loss RF path across all circuits, and rings. The system requires low levels of electrical noise.
  2. Aluminium wiring, knob and tube wiring, old copper wiring, old fuse boards, distribution boards and sockets will undermine the performance. Unless it is 1990’s or newer, try and eliminate it from the system.
  3. Arc-Fault Circuit Interrupter (AFCI), Arc-Fault Detection Device (AFDD), Ground Fault Circuit Interrupter (GFCI), or Residual Current Device (RCD) circuit breakers can cause depleted or even entirely blocked Powerline signals. You can purchase “Powerline Compliant Outlet” surge protectors, which may mitigate some of the loss.
  4. Devices with switch-mode power supplies can create noise that limits performance. Isolate such devices before testing (especially near the receiver Powerline unit).
  5. Any appliance on your power system/ring with an electrical motor should be placed on its own surge protector e.g. air-conditioners, washing-machines and electric-fans.
  6. Remember the distance rule: Under 300m, ideally under 200m. This is especially important in the UK where rings are used allowing a run to be far longer than it might otherwise seem.
  7. 3-phase electrical systems do not work as well with Powerline. Avoid their use if possible in favour of 2-phase.
  8. If you are in a communal building, or high density residential environment, use a circuit breaker from the street to reduce the risk of data leakage out of your home.
  9. Loose screws, poor joints and thin or frayed cabling at connections can all cause problems. Ensure that everything is nice and tight.
  10. Crossing between ring mains will attenuate performance. Where possible keep adapters on the same ring main.

Asus P7P55D Evo (P55 Express chipset) and an i7-860 with 32GB DDR3 12800/1600MHz RAM

System Requirements:

  • Asus P7P55D Evo
  • 32GB DDR 3

The Problem:

The i7-860 and the P55 Express chipset are both listed as only supporting 16GB RAM. The product page for the P7P55D Evo lists it as only supporting 16GB RAM across 4 DIMM slots. I wanted to try it with 32GB to see if it would work.

View: P7P55D Evo Product Page
View: Intel Core i7-860 Specifications

More Info

I found some reasonably priced Crucial Ballistix Sport DIMM’s with the following specification.

  • DDR3 PC3-12800
  • 9-9-9-24
  • Unbuffered
  • NON-ECC
  • DDR3-1600
  • 1.5V
  • 1024Meg x 64

The set that I picked up was a BLS4CP8G3D1609DS1S00BEU a 32GB set in 4x8GB for £113, which is (as of writing) a discontinued set that you cannot seem to pick-up from crucial.com, but is in essence 2x BLS2CP8G3D1609DS1S00CEU 16GB kits.

The Crucial RAM checker lists it as being incompatible with the P7P55D Evo although the only difference between this and the compatible equivalent are the fact that the last entry on the compatible DIMM’s specification shows a value of 512Meg x 64 rather than 1024Meg x 64, making them 4GB DIMM’s – in fact these were exactly what I removed from the system to perform the test.

The results?

  • The system went through POST fine
  • The system went through the comprehensive POST Memory Test fine
  • The BIOS could see all 32GB
  • The system booted to Windows Server 2012 R2
  • Windows could identify all 32GB RAM as present and usable
  • The RAM passed the Microsoft Memory tester
  • The RAM accepted memory reservations made by Hyper-V for 30GB RAM for several different VM’s (i.e. it could address and allocate past 16GB)
  • The system has been running for 4 days without incident running Windows Server 2012 R2

I call that a result and it would seem that the P55 Express Chipset and the i7-860 are capable of making use of 8GB DIMM’s.

NB: Please keep in mind that the home editions of Windows are memory capped, if you want to address more than 16GB of RAM in Windows 7 or higher, you need the Professional or Enterprise versions of Windows or a Server Edition of Windows. Remember also that it must be x64 (64-bit) and cannot be an x86 (32-bit) edition.

Buy: BLS4CP8G3D1609DS1S00BEU 32GB Kit on
Buy: BLS2CP8G3D1609DS1S00CEU 16GB Kit on

View: BLS2CP8G3D1609DS1S00CEU on Crucial.com

Warning: Asus P4C800-E Deluxe and using modern Power Supply Units (PSU) with a motherboard earlier than 2005/2006 (Intel Socket 478)

System Requirements:

  • Old motherboard (specifically in my case a Intel Socket 478 motherboard)
  • Asus P4C800-E

The Problem:

So you have a trusty old 478 system that you cant bare to part with, but the PSU has just blow out on it and you need a new one. You know that a good PSU is worth the investment, you get a brand name, a high wattage value and something with a high efficiency value.

You get home, you wire it up and… nothing.

The machine turns on, it may post, it may just hold up on a black screen before the POST. The latter is what happened with my Asus P4C800-E Deluxe when I came to replace the PSU with a £70 Antec TruePower PT-550. It would not start, however if I swapped back a cheap PSU that I borrowed as a stop gap, it would POST fine.

More Information:

Another 15 mile one way trip back to the store with the Antec and we stood around scratching our heads over this one for a few minutes.

It turns out that all (decent) modern PSU’s have a design change which makes them incompatible with boards that require -5v – and probably quite a few others.

The Asus P4C800-E Deluxe requires a -5v rail on the ATX in order to get going. In every brand name PSU box we opened in the store – including the one I was returning – the -5v rain pin was missing from the 20-pin ATX connector.

Net result: the system cannot boot.

Why are PSU’s shipping without this?

Some post-event research leads me to understand that with the release of the ATX12V specification version 1.2 in January 2002, the -5v rail became optional on the ATX specification. With revision 1.3 in April 2003 and the 2.x revision the -5v rail was banned altogether. Look at any modern PSU and you’ll find that pin 20 in the ATX connector is blanked out.

So if you are looking for a decent PSU for a Intel 478 system, you may have a problem. In the end I was forced to get one of those cheap PSU’s that case manufacturers supply with cases – which conveniently has a -5v rail but is unremarkable in every other way aside from probably its inefficiency.

Cannot install the integrated audio AC97′ hardware from a Asus P4S333 or P4S533 under Windows Vista

System Requirements:

  • Windows Vista SP1
  • Windows Server 2008

The Problem:

So, you get fed-up of trying to get PCI sound cards working under Vista and opted for the integrated sound CPU clogging solution?! I don’t blame you.

The P4S333 may be old kit, but it’s a solid motherboard, very much Vista capable with the right upper end P4 and enough RAM, particularly if you flashed the P4S333 with the P4S533’s BIOS to make use of the 533 MHz FSB. The difficulty we have is however in that the C-Media CMI8738 AC97′ chip that the board uses cannot be matched to any of Windows Updates hardware ID’s and Asus, naturally, do not offer a Vista driver.

More Information:

Thankfully, C-Media do provide generic drivers, and there is a January 2009 driver release for the CMI8738 as of writing. The driver does work once you get it out of the RAR file, however:

  1. The driver does not have the necessary hardware ID to install automatically against the customised chip on the P4S333 / P4S533
  2. The driver is not digitally signed

Despite that, I’ve not seen any problems with it, and despite the CPU connotations, it got rid of irritating buzzing that the Creative Labs Sound Blaster Live! 5.1 was causing with the useless Vista driver set.

The Fix

Very simply, you need to manually install the driver.

  1. Download the latest CMI8738 driver from C-Media (http://www.cmedia.com.tw/). As of writing the driver version was 8.17.33 and it worked a treat
  2. Deflate the RAR into the file system
  3. Open the Control Panel
  4. Open the Device Manager
  5. Find the uninstalled multimedia device in the Other Devices section, right click, Update Driver Software
  6. Click Browse my computer for driver software
  7. Click let me pick from a list of device drivers on my computer
  8. Hit the have disk button
  9. Browse to the path that you inflated the RAR file to, for example if you inflated the RAR file to c:\temp\ you want to browse to the following location:
    c:\temp\PCI-8738-090109-8.17.33(Vista3264-RC-01)\SoftwareDriver\driverNote that if the driver version you are using is newer, then the version in the file name will clearly be different. Ultimately however you are looking to point to the SoftwareDriver\driver folder (there are several INF’s and some CAT files in here)
  10. In the manufacturer list from the available select:
    C-Media
  11. From the Model list select:
    C-Media PCI Audio Device
  12. Click Next
  13. Windows will notify you that the driver has not been digitally signed. You’re going to have to tough this one out I’m afraid and install it.
  14. At that point the audio should just start working.